Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex.
نویسندگان
چکیده
The precursor mRNA retention and splicing (RES) complex mediates nuclear retention and enhances splicing of precursor mRNAs. The RES complex from yeast comprises three proteins, Snu17p, Bud13p and Pml1p. Snu17p acts as a central platform that concomitantly binds the Bud13p and Pml1p subunits via short peptide epitopes. As a step to decipher the molecular architecture of the RES complex, we have determined crystal structures of full-length Pml1p and N-terminally truncated Pml1p. The first 50 residues of full-length Pml1p, encompassing the Snu17p-binding region, are disordered, showing that Pml1p binds to Snu17p via an intrinsically unstructured region. The remainder of Pml1p folds as a forkhead-associated (FHA) domain, which is expanded by a number of noncanonical elements compared with known FHA domains from other proteins. An atypical N-terminal appendix runs across one beta-sheet and thereby stabilizes the domain as shown by deletion experiments. FHA domains are thought to constitute phosphopeptide-binding elements. Consistently, a sulfate ion was found at the putative phosphopeptide-binding loops of full-length Pml1p. The N-terminally truncated version of the protein lacked a similar phosphopeptide mimic but retained an almost identical structure. A long loop neighboring the putative phosphopeptide-binding site was disordered in both structures. Comparison with other FHA domain proteins suggests that this loop adopts a defined conformation upon ligand binding and thereby confers ligand specificity. Our results show that in the RES complex, an FHA domain of Pml1p is flexibly tethered via an unstructured N-terminal region to Snu17p.
منابع مشابه
An unusual RNA recognition motif acts as a scaffold for multiple proteins in the pre-mRNA retention and splicing complex.
The yeast pre-mRNA retention and splicing complex counteracts the escape of unspliced pre-mRNAs from the nucleus and activates splicing of a subset of Mer1p-dependent genes. A homologous complex is present in activated human spliceosomes. In many components of the spliceosome, RNA recognition motifs (RRMs) serve as versatile protein-RNA or protein-protein interaction platforms. Here, we show th...
متن کاملProteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing.
Using the proteomic tandem affinity purification (TAP) method, we have purified the Saccharomyces cerevisie U2 snRNP-associated splicing factors SF3a and SF3b. While SF3a purification revealed only the expected subunits Prp9p, Prp11p and Prp21p, yeast SF3b was found to contain only six subunits, including previously known components (Rse1p, Hsh155p, Cus1p, Hsh49p), the recently identified Rds3p...
متن کاملThe pre-mRNA retention and splicing complex controls expression of the Mediator subunit Med20
The heterotrimeric pre-mRNA retention and splicing (RES) complex, consisting of Bud13p, Snu17p and Pml1p, promotes splicing and nuclear retention of a subset of intron-containing pre-mRNAs. Yeast cells deleted for individual RES genes show growth defects that are exacerbated at elevated temperatures. Although the growth phenotypes correlate to the splicing defects in the individual mutants, the...
متن کاملThe pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression
The conserved pre-mRNA retention and splicing (RES) complex, which in yeast consists of Bud13p, Snu17p and Pml1p, is thought to promote nuclear retention of unspliced pre-mRNAs and enhance splicing of a subset of transcripts. Here, we find that the absence of Bud13p or Snu17p causes greatly reduced levels of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA and that a lack of Pml1p r...
متن کاملStructures of intermediates during RES complex assembly
The action of the spliceosome depends on the stepwise cooperative assembly and disassembly of its components. Very strong cooperativity was observed for the RES (Retention and Splicing) hetero-trimeric complex where the affinity from binary to tertiary interactions changes more than 100-fold and affects RNA binding. The RES complex is involved in splicing regulation and retention of not properl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 385 2 شماره
صفحات -
تاریخ انتشار 2009